Bloomsburg University Computer Science Assessment Plan 2020

Program Mission Statement

The Department of Mathematical and Digital Sciences offers a Bachelor of Science degree in computer science. The curriculum is broadly based in core areas of computer science, with an emphasis on the design, analysis, and production of complex and reliable software. Graduates will be prepared to advance in computing careers and lead in technical endeavors, or to pursue an advanced degree in computer science.

Program Educational Objectives

Program educational objectives are broad statements that describe the career and professional accomplishments that the computer science program is preparing graduates to achieve.

Three to five years after graduation, our computer science alumni will:

- 1. be professionally employed in the computing field
- 2. communicate and collaborate effectively in a team environment
- 3. continue to grow professionally by adapting to new technologies and assuming leadership responsibilities

Periodic Review and Revision Process

The Computer Science Curriculum Committee will review our mission statement and program educational objectives once every five years. Input from constituents will be obtained and utilized during each review.

The primary source of constituents' input for this review will come from advisory board members during our annual advisory board meeting on career day. We will also look at alumni survey results and any comments received from employers not on our advisory board and the general public. Employers and the general public are welcome to email comments on any part of this document to the department chairperson (Currently Dr. Curt Jones, <u>cjones@bloomu.edu</u>).

Student Learning Outcomes

We have ten program learning outcomes listed under six categories.

• Software Engineering

- 1. Students will demonstrate strong programming skills involving at least two object---oriented languages.
- 2. Students will be able to write a significant application that efficiently utilizes a database for data storage and retrieval.
- 3. Students will be knowledgeable about software design processes and methodologies.

• Operating Systems

4. Students will have a strong understanding of operating system concepts.

• Hardware

5. Students will have a strong understanding of computer hardware concepts.

• Problem Solving

- 6. Students will be able to determine what Abstract Data Type (ADT) should be used to solve a problem and what data structure should be used to efficiently implement an ADT.
- 7. Students will be able to analyze the complexity of algorithms.
- 8. Students will be able to solve programming problems.
- Communication
 - 9. Students will demonstrate oral and written communication skills necessary to read, write, and speak effectively about concepts in computing.
- Ethics
 - 10. Students will understand ethical and legal issues involving digital technology.

Computer Student Learning Outcomes Periodic Review and Revision Process

The computer science curriculum committee will review our Student Learning Outcomes once every five years. Input from constituents will be obtained and utilized during each review.

The primary source of constituents' input for this review will come from advisory board members during our annual advisory board meeting on career day. We will also look at the Graduating Senior Survey results, Alumni Survey results and any comments received from employers not on our advisory board and the general public. Employers and the general public are welcome to email comments on any part of this document to the department chairperson (currently Dr. Curt Jones, <u>cjones@bloomu.edu</u>).

Student Learning Outcomes Assessment Plan

Success in achieving the above outcomes is assessed through the administration of various direct and indirect measures including the Major Field Test in Computer Science, course embedded assessments, and exit surveys of graduating majors. Assessment results are regularly reviewed by subcommittees of the Computer Science Curriculum Committee. Performance results are reported to the Computer Science Curriculum Committee and appropriate curriculum changes are implemented.

Direct Assessment Summary						
Learning Outcomes Summary:	Direct Assessment Method Summary					
Software Engineering: (1) Students will demonstrate strong programming skills involving at least two objectoriented languages.	(1) Course embedded assessment based on a C++ programming project in COMPSCI 255 (C++ with Data Structures) – C++ Assessment.					
 (2) Students will be able to write a significant application that efficiently utilizes a database for data retrieval and storage. (3) Students will be knowledgeable about software design processes and methodologies. 	 (1) Course embedded assessment based on a Java programming project in COMPSCI 221 (Advanced Java) – Java Assessment. (2) Course embedded assessment in COMPSCI 356 (3) ETS Major Field Test in Computer Science (MFTCS). 					
Operating Systems: (4) Students will have a strong understand of operating system concepts.	MFTCS field test.					
Hardware: (5) Students will have a strong understanding of computer hardware concepts.	MFTCS field test.					
 Problem Solving: (6) Students will be able to determine what Abstract Data Type (ADT) should be used to solve a problem and what data structure should be used to efficiently implement an ADT. (7) Students will be able to analyze the complexity of algorithms. 	(6 & 7) Abstract Data Type (ADT) and Runtime Analysis Assessment. (8) Programming Problem Solving Assessment.					
(8) Students will be able to solve programming problems.						
Communication: (9) Students will demonstrate oral and written communication skills necessary to read, write, and speak effectively about concepts in computing	Course embedded assessment will be administered with student project presentations and papers from our capstone course. (COMPSCI480ObjectOriented Software Engineering). Standard rubrics will be utilized to assess both written and oral communication skills.					
Ethics : (10) Students will understand ethical and legal issues involving digital technology.	Course embedded assessment will be administered in the Computer Ethics course. Students will be presented with a scenario related to the computer industry and be asked to conduct an ethical analysis. A committee from the department will use a standardized rubric to analyze solutions.					

Indirect Assessment

The Computer Science program utilizes an **exit survey of graduating seniors** as an indirect assessment method. This survey covers all of our learning outcomes and allows the computer science program to determine our students' perception of their education at the time of graduation. We also have a **graduate survey** that is sent to students three years after graduation. This survey helps us determine if our former students continued their education and how they are advancing in their current positions.

Assessment Method	Administered	Frequency*	Reviewed	Relevant Outcomes
Major Field Test in	During course	Every spring	Following fall	1, 3, 4, 5, 6, 7, and 8
Computer Science	COMPSCI 480	semester	semester	
Assessment				
	During course	Once every 5	Following	1
C++ Assessment	COMPSCI 255	years.	semester	
	During course	Once every 5	Following	1
Java Assessment	COMPSCI 221	years.	semester	
	During course	Once every 5	Following	2
Database Assessment	COMPSCI 357	years.	semester	
ADT and Runtime Analysis	During course	Once every 5	Following	6 and 7
Assessment	COMPSCI 355	years.	semester	
Programming Problem	During course	Once every 5	Following	8
Solving Assessment	COMPSCI 386	years.	semester	
Communication Skills	During course	Once every 5	Following	9
Assessment	COMPSCI 480	years.	semester	
	During Course	Once every 5	Following spring	10
Ethics Assessment	COMPSCI 360	years.	semester	
Graduating Senior Survey	End of	Every Year	Following	All
Assessment	semester		semester	
	Online Survey	Once every 5	Following	All
Graduate Assessment		years.	semester	
	Online Survey	Once every 5	Once a year	All
Employer Assessment	· · ·	years.		
· · · ·	Career Day	Once every 5 years.	After Meeting	All
Advisory Board Meeting	,	, ,		
, 0				

Summary of All Assessment Methods

*Please see the detailed assessment calendar on the next page

			Co	mputer S	cience	Assessme	ent Sch	edule			
	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
	2015	2016	2016	2017	2017	2018	2018	2019	2019	2020	2020
Mission											
Statement											
and Program											
Educational							С				
Objectives											
review. Once											
every five											
years											
, Student											
Learning											
Outcomes							С				
review. Once							Ū.				
every five											
vears											
Major field											
Test in											
Computer		C		C		C		C		Р	
Scionco		C		Ũ		C		C		•	
Every spring											
Accossment											
Assessment.		С						C			
Unce every 5								C			
years.											
Java											
Assessment			С								Р
Once every 5											
years											
Database											
Assessment						c					
Once every 5						C					
years											
Started											
Spring 2018											
ADT and											
Runtime											
Analysis					C						
Assessment											Р
Once every 5											
years.											
Programming											
Problem											
Solving		ſ				С					
Assessment											
Once every 5											
years.											
Oral											
Presentation											
Assessment	C				С						
Once every 5											
years.											

	Fall 2015	Spring 2016	Fall 2016	Spring 2017	Fall 2017	Spring 2018	Fall 2018	Spring 2019	Fall 2019	Spring 2020	Fall 2020
Written Assessment Once every 5 years.						С					
Ethics Assessment Once every 5 years. Started fall 2017					с						
Senior Exit Survey Assessment Every spring		С		С		С		С			
Alumni Survey Once every 5 years.					с						
Employer Survey Once every 5 years.					С						
Advisory Board Meeting During Career Day As needed							С				

C – Assessment activity completed ------ P – Planned ----- Results not yet available

I. Major Field Test in Computer Science

Our primary assessment tool is the Major Field Test in Computer Science (MFTCS) offered by ETS testing services (www.ets.org). This test is given to our graduating seniors every spring semester. It allows us to compare our students to students at other universities and gives us a valuable external measurement with objective scoring and norm---referenced data. The test covers a broad spectrum of computer science topics and allows us to see how we are doing with five of our learning outcomes. The MFTCS measures student proficiency in programming skills (learning outcome 1), software engineering (learning outcome 3), operating systems (learning outcome 4), hardware (learning outcome 5), discrete problem solving (learning outcome 6), and algorithms and data structures (learning outcome 7).

The test is required of students enrolled in our Software Engineering course. This was designed to help motivate students to take the test seriously. The computer science faculty review the information from the test at their first meeting of the fall semester. Dr. Jones and Dr. Coles are the faculty primarily responsible for this assessment tool.

II. C++ Assessment

This assessment is a locally developed tool that allows us to measure how well our students can design and create software solutions in C++. This project based assessment is tailored to the specific objectives we have for designing software solutions and supports our learning outcome for students to have programming skills in two different object--- oriented languages (learning outcome 1). The project is given to students enrolled in COMPSCI 255. Students in this course are normally second semester sophomores. Completion of the project is a requirement of the course. The projects are evaluated by a subgroup of the computer science faculty who then present their results to the entire group. Dr. Coles, Dr. Khan, Dr. Lu, and Dr. Wynters are the faculty responsible for this assessment tool.

III. Java Assessment

This assessment is a locally developed tool that allows us to measure how well our students can design and create software solutions in Java. This project---based assessment is tailored to the specific objectives we have for designing object-oriented software solutions. This assessment tool also supports our learning outcomes for students to have programming skills in two different object-oriented languages. The project is given to students enrolled in COMPSCI 221. Our assessments are timed so that the Java and C++ assessments are given to different groups of students. Students in COMPSCI 221 are normally first semester sophomores. Completion of the project is a requirement of the course. The projects are evaluated by a subgroup of the computer science faculty who then present their results to the entire group. Dr. Lu and Dr. Jones are the faculty responsible for this assessment tool.

IV. Database Assessment

This assessment is a locally developed tool that allows us to measure how well our students can design a database schema, implement SQL code, create reports and solve a problem using

a relational database. Students write code utilizing database in three of our required classes. This assessment is given to students who are enrolled in COMPSCI 357. The results are evaluated by a subgroup of the Computer Science faculty.

V. Abstract Data Type (ADT) and Runtime Analysis Assessment

We place selected questions on the final exam of our junior---level Algorithms and Data Structures course. The exact questions utilized are to be selected by the instructor of the course subject to approval by the Computer Science Curriculum Committee. We consider how many students get the problems correct and the overall average score of each student on each question. The instructor of Compsci 355, Analysis of Algorithms and Data Structures, is responsible for the administration of this assessment tool.

VI. Programming Problem---Solving Assessment

We utilize a programming contest---like assessment activity to assess the ability of our upper--level majors to determine and properly sequence the basic logical steps needed to implement an algorithm. The word "contest" requires clarification: our students are not competing against one another, but the structure and administration of the event is similar to that of many high school and college programming contests.

Students are given five programming problems of increasing difficulty to solve individually in three hours. Problems are either correct or incorrect for this assessment activity; we do not consider partial credit. We analyze how many problems our students get correct to help determine their programming problem solving abilities. Dr. Coles is the faculty member responsible for this assessment activity.

VII. Communication Skills Assessment

This performance appraisal assessment tool is applied to student presentations at the end of various computer science classes. The results are reported to the entire group during the following fall semester. Dr. Drue Coles and Dr. Curt Jones are responsible for the administration of this assessment tool.

VIII. Ethics Assessment

Our ethics assessment is performed once every three years in COMPSCI 360. Students are given typical software engineering scenarios and asked to identify the various individuals in the scenario and how well these individual understood and followed their professional code of ethics. The students write their solutions during our required ethics course. The instructor of COMPSCI 360, Computer Ethics, is responsible for the administration of this assessment tool.

IX. Senior Exit Survey

Our graduating seniors complete a locally developed survey every spring semester. This survey allows the students to state their perception of how well the department satisfied its learning outcomes. The department chairperson summarizes the information and presents it to the Computer Science Curriculum Committee during the first meeting of the fall semester. The department office is responsible for this assessment tool.

X. Alumni Survey

An email is sent to graduates by the department every three years. We target students who have graduated three to five years prior to our survey. This assessment tool allows us to see how our graduates are advancing in their careers and determine how many have furthered their education in graduate school. We also use this assessment to gauge the accuracy of our Computer Science Program Educational Objectives.

XII. Employer Survey

The department office sends an email to employers identified by our Alumni Survey inviting them to complete our online survey. This assessment tool allows us to see how our graduates are advancing in their careers. We also use this assessment to gauge the accuracy of our Computer Science Program Educational Objectives. We administer this survey once every three years.

XI. Advisory Board

The Computer Science Advisory board meets as needed in conjunction with our annual Career Day event. Normally we formally meet once every five years. Informally we meet and interact every year. Additional formal meetings are scheduled when curriculum changes are being planned. Email communication is also used to review curriculum.

Advisory Board Members along with their year of graduation, employer and current position

James Campbell '98, Penn State University, Senior Unix Consultant Len Kalechitz '01, Solution Development Firm, LLC, Computer Scientist Scott McCarty '98, OPTiMO Information Technology, LLC, Information Technology Director Matthew Quinn '02, The Pennsylvania State University, Applied Research Laboratory Mike Trelease '06, Geisinger Health System, Program Director Dan Polenik '14, Vanguard, Java Software Engineer Barbara Romano, '83, South Jersey Industries, Director of Application and Project Governance Appendix

Assessment Instruments and Rubrics

Department of Mathematical and Digital Sciences

		Oral Presentati	on Assessm	nent		
Speaker:		Eval	uator:			
Presentation Topic:		Date	e:			
Evaluation Scale:	4	3		2	1	
	Exemplary	Good	Marginal	Unsatis	sfactory	
		Presentati	on Style			
	Criteria			Score	Weight	Total
1. Personal appearance	ce is appropriate	•	-		1	
2. Speaks clearly and	with sufficient vo	olume. Articulate	es			
words well.			-		2	
3. Smooth transitions	between topics.	Limits the use o	of filler		_	
words ("ums").			-		2	
4. Uses engaging vocalizations. Confident speaker.					1	
5. Avoids distracting r	mannerisms. Did	not rush the	-		2	
presentation.						
6. Uses audience app	ropriate vocabula	ary, content, and	d style.			
			-		2	
7. Maintains appropri	ate eye contact	with audience.	-		1	
8. Maintains audience	e interest.		-		1	
Presenta	ation Style Weig	hted Total				
		Cont	ent			
	Criteria			Score	Weight	Total
9. Presentation includ	les introduction,	body and concl	usion.			
40.0.1.1.1.1.1			-		3	
10. Content is logicall	y organized.		-		3	
11. Visual aids or pre	sentation materia	als enhance			2	
presentation.					3	
12. Demonstrates sub	oject knowledge,	easily understar	nds and			
answers questions on	the topic. Clean	iy well prepared	· –		4	
Responds effectively	to questions.					
Conte	ni score weight	eu lotal				
			Weighte	d Total		/100

Computer Science Graduating Senior Survey Bloomsburg University of Pennsylvania

Department of Mathematical and Digital Sciences

Note: Completion of this survey is required to complete your application to graduate. Information gathered from this survey will be used in the assessment of our Computer Science program.

Na	me				·			
Dat	te							
Per Ma Ade	rmanent iling dress							
Per Em	manent ail Address							
1.	I entered th science prog	e computer ram as a:	New Freshme	n		Transfer (Fro	m a Community college)	
			Transfer (From a 4year college)			Other 🗖		
2.	How many s our program you to gradu than 8, pleas	emesters in did it take uate? (If more se explain why)	Semesters	Explain:				
3.	Did you part internship?	icipate in an If so, describe.	Yes	Describe:				
4.	Were you ei undergradua where? And	Vere you employed as an ndergraduate? If so, /here? And how many		Where:				
	hours a wee work?	k did you	No	Hours a	week:			
5.	What sector headed for u	are you Jpon	Corporate		Consultin	g 📕	Education	
	graduation?		Government		Graduate	School 📕	Other	
6.	Who will be (Graduate So graduation?	your employer chool) upon						
7.	What interv	al do you salary to be	\$0\$20,000		\$40,000	\$60,000	\$80,000 \$100,000	
	in?		\$20,000 \$40	,000	\$60,000	\$80,000	\$100,000 or more	
8.	How do you program has	feel our prepared you	a. Very	Prepared		b. F	Reasonably Prepared	
	for your nex	t step?	c. Somewhat Prepared		ared	d. Poorly Prepared		
9.	If you feel ir prepared, te	nadequately Il us why.						

10.	Describe what you liked least about our program?					
11	What did you like hest					
	about our program?					
12.	What concrete suggestions					
	do you have for the					
	our students?					
13.	Please assess how well we have	ave prepared you o	n the follow	wing criteria		
•	ObjectOriented Programmin	gSkills	Poor	Satisfactory	Good	Excellent
•	Programming skills in Java		Poor	Satisfactory	Good	Excellent
•	Programming skills in C++		Poor	Satisfactory	Good	Excellent
•	Ability to write a significant data application	atabase	Poor	Satisfactory	Good	Excellent
•	Knowledge of software design methodologies	n processes and	Poor	Satisfactory	Good	Excellent
•	Knowledge of operating syste	ms concepts	Poor	Satisfactory	Good	Excellent
•	Understanding of computer h	ardware	Poor	Satisfactory	Good	Excellent
•	Problem Solving skills		Poor	Satisfactory	Good	Excellent
•	Proficiency in algorithms and	data structures	Poor	Satisfactory	Good	Excellent
•	Proficiency in oral and written of technical information	n communication	Poor	Satisfactory	Good	Excellent
•	Understanding of ethical issue computing	es related to	Poor	Satisfactory	Good	Excellent

14. Place any additional comments here.

The following is an exported survey from Qualtrics. It is formatted differently on the web when completed by our graduates.

Computer Science Program Alumni Survey

1 Your Name (Optional)

2 Your Email Address (Optional)

3 We would like to survey the supervisors of our graduates. If you are willing to have us ask your supervisor to complete a short survey, then please provide us with your supervisor's name and email address.

4 What was your year of graduation?

00 2015

- 00 2014
- 00 2013
- 00 2012
- 00 2011
- 00 2010
- 00 2009
- 00 2008
- 00 2007
- 00 2006
- 00 2005
- 00 Before 2005

5 What majors did you complete at Bloomsburg University? (check all that apply)

D Computer Science

- Digital Forensics
- Mathematics
- Other _____

6 What minors did you complete at Bloomsburg University? (check all that apply)

- **D** Computer Science
- Digital Forensics
- **D** Mathematics
- **D** Statistics
- Other_____

7 What extra---curricular activities did you complete at while at Bloomsburg University? (check all that apply)

- □□ I completed an internship.
- **I** was involved with the ACM club.
- **I** completed an Independent Study course.
- **I** was involved in research with a faculty member.

8 We welcome any comments about your participation in extra---curricular activities sponsored by the department. What was interesting? What was useful?

9 Which phrase best describes how well the CS major prepared you for your career?

- **OO** Very well prepared.
- **OO** Reasonably prepared.
- \mathbf{OO} Somewhat prepared.
- **OO** Not very prepared.
- $\mathbf{OO}~\mbox{Not}$ at all prepared.

10 How would you rate your abilities in the following areas?

	Excellent (4)	Good (3)	Satisfactory (2)	Poor (1)	N/A ()
Leadership Skills	00	00	00	00	00
Ability to adapt to new technologies	00	00	00	00	00
Ability to work in a team environment	00	00	00	00	00
Object Oriented programming	00	00	00	00	00
Java programming	00	00	00	00	00
C++ programming	00	00	00	00	00
Database design and implementation	00	00	00	00	00
Software engineering	00	00	00	00	00
Operating systems knowledge	00	00	00	00	00
Computer hardware knowledge	00	00	00	00	00
Algorithms and data structures knowledge	00	00	00	00	00
Problem solving	00	00	00	00	00
Oral communication	00	00	00	00	00
Written communication	00	00	00	00	00

11 Did you continue your education after graduating Bloomsburg University?

- □□ I have not attended graduate school
- **D** I currently attend or I have attended graduate school
- □□ I earned a Masters Degree
- **D** I earned or plan to earn a Doctorate Degree

12 We welcome any additional feedback you could provide on the Bloomsburg University Computer Science program.

The following is an exported survey from Qualtrics. It is formatted differently on the web when completed by our graduates.

Computer Science Program Employer Survey

- 1 Company Name (Optional)
- 2 Your Name and Position (Optional)
- 3 How many Bloomsburg University Computer Science Students do you supervise?

4 How would you rate Bloomsburg University graduates in the following areas?

	Excellent	Good	Satisfactory	Poor	N/A
Leadership Skills	00	00	00	00	00
Ability to adapt to new technologies	00	00	00	00	00
Ability to work in a team environment	00	00	00	00	00
Object Oriented programming skills	00	00	00	00	00
Java programming skills	00	00	00	00	00
C++ programming skills	00	00	00	00	00
Database design and implementation skills	00	00	00	00	00
Software engineering skills	00	00	00	00	00
Operating systems knowledge	00	00	00	00	00
Computer hardware knowledge	00	00	00	00	00
Algorithms and data structures knowledge	00	00	00	00	00
Problem solving skills	00	00	00	00	00
Oral communication skills	00	00	00	00	00
Written communication skills	00	00	00	00	00

5 We welcome any additional feedback you could provide on the Bloomsburg University Computer Science program or its graduates.

Student name: _____

Evaluator Name: _____

C++ Assessment Rubric

	UNSATISFACTORY 1	MARGINAL 2	GOOD 3	EXCELLENT 4	SCORE
Pointers, operations on linked data structures, memory management	There is little or no demonstrated understanding of how to perform dynamic memory allocation or manipulate pointers.	There are missing or grossly incorrect functions and/or obvious errors that could cause memory leaks.	There are subtle errors that could lead to memory leaks but all functions are implemented and functional.	There are no potential memory leaks. Destructor, copy constructor, and assignment operator implemented correctly.	
STL iterators and sorting algorithms	STL is not used.	An STL vector and indexing is used instead of the required list class.	An STL list and an iterator are used with at most minor errors.	An STL list and iterator are used correctly and the list of objects is sorted properly.	
File I/O	Does not read any information from the input file.	Does not use C++ stream objects for file I/O, crashes, and/or does not read and store all the data in the file.	Uses C++ stream objects for file I/O, successfully reads and stores all the data in the file.	Uses C++ stream objects for file I/O, successfully reads and stores all the data in the file, using the most appropriate kind of loop, and closes the file.	
Operator overloading (and complexity requirement for operator+)	There is little or no demonstrated understanding of how to overload operators and/or how to invoke them.	There are significant gaps in knowledge of how to overload operators and/or how to invoke them. Operator+ does not meet the complexity requirement.	The operator overloading is generally correct, but the complexity requirement for operator+ is not met.	The required operators are correctly overloaded, and the complexity requirement for operator+ is met.	
Templates	No attempt to implement a template class.	Major errors resulting in a non-functional template class, e.g., a member function is not a template function.	No major errors; the template class can be instantiated and is functional.	No functional errors, and uses recommended coding conventions.	
General OOP principles	Incorrect parameter and return value types, global variables or other details that subvert the idea of information hiding, incorrect use of const.	Highly non-cohesive interface. No understanding of when/why to declare references and methods const. Member functions not focused on their particular responsibilities.	Public interface contains one or two member functions not related to the concept represented by the class. Member functions or references not consistently declared const when they should be.	Parameters and return values are declared with appropriate types. Const is used where appropriate. No global variables or other hacks to violate information hiding. Clear separation of public interface and private implementation. Cohesive public interface.	
Clarity	There are significant deviations from coding standards throughout. Many parts of the code are undocumented, overly complex, and/or cannot be understood without judgment or guesswork.	There are significant deviations from coding standards. The code is disorganized or poorly documented, and difficult to understand in places.	The code is generally easy to read, but in some cases there may be insufficient documentation, unusual or inconsistent indentation, cluttered or overly complicated code, or other minor deviations from coding standards.	The code is professionally written: neatly organized, easy to read and understand, with correct indentation, reasonable choices for identifiers, and internal documentation to explain non-obvious details of the logic or its implementation.	

Java Assessment Rubric

	UNSATISFACTORY 1	MARGINAL 2	GOOD 3	EXCELLENT 4	SCORE
Implementing Interfaces	No attempt to implement the <i>Comparable</i> interface	Incorrectly implemented the <i>Comparable</i> interface	The <i>Comparable</i> interface is implemented correctly in most instances and classes.	The Comparable interface is implemented correctly in all the appropriate classes.	
Object-Oriented Design	Difficult to follow design.	Some good design elements, but many design problems are evident.	Reasonable class design, but some design problems are evident.	Excellent class design throughout the entire project.	
Generic Class Design	No attempt to introduce generic types	Generic types are introduced, but there are many problems with their specifications and implementations.	Generic types are introduced and they are used correctly in most instances.	Generic types are introduced and the types are used correctly in all instances.	
Java Coding Style (Programs are available to check for coding style)	No style	Many style faults	Most style conventions are followed. Most identifier names are appropriate. Most constants declared correctly.	All coding follows standard style conventions. All identifier names are appropriate. All constants are declared correctly.	
JavaDoc Documentation	Minimal java documentation. Most methods are not completely commented.	Many methods are not correctly documented.	Most methods are commented correctly and completely.	Each method and class has appropriate descriptions. All meta tags are correctly completed.	
Code	Code does not execute.	Code executes, but many implemented methods do not perform correctly.	Most implemented methods perform correctly.	The entire program is correct. All methods are implemented correctly.	
Problem Solution	Many program requirements are not completed.	Most requirements are completed, but few are correct.	Solution is well done; most requirements are completed correctly.	All program requirements are completed. Program is easy to use.	

Evaluator Name: _____

Database Assessment Rubric

	UNSATISFACTORY 1	MARGINAL 2	GOOD 3	EXCELLENT 4	SCORE
Database Design	Table structure is difficult to follow. Not all required information is represented in the database.	All required information is present in the database. However the table structure is poorly designed	Table structure is appropriate and all required information is present.	Table structure is well designed. All required information is present. Tables have a primary key.	
Table Creation Statements	SQL code to create the tables is mostly incorrect or poorly designed.	Some SQL code to create the tables is correct, but many items are incorrect or poorly designed.	Most SQL code to create the tables is correct, but one or two columns is of the wrong type.	All SQL code to create the tables is correct.	
Insert Statements	SQL code to insert data into the tables is mostly incorrect or poorly designed.	Some SQL code to insert data into the tables is correct, but many items are incorrect or poorly designed.	Most SQL code to insert data into the tables is correct, but one or two columns is of the wrong type.	All SQL code to insert data into the tables is correct.	
Other SQL Code	Most code does not execute correctly.	Some of the SQL statements executes correctly, but many methods do not perform correctly.	Most implemented methods perform correctly.	The entire program is correct. All methods are implemented correctly.	
Reports	Most reports are poorly designed and unsatisfactory.	Many reports are poorly designed and unsatisfactory.	Virtually all reports are well designed and implemented.	All reports are well designed and implemented.	
Problem Solution	Many solution requirements are not completed.	Most requirements are completed.	Solution is well done with only one or two issues.	All requirements are completed. Project is easy to use and understand.	

	UNSATISFACTORY	MARGINAL	SATISFACTORY	EXCELLENT	SCORE
	1	Z	3	4	
Analysis of Iterative Algorithms	Less than 35% correct.	36 – 60% correct.	61 85% correct.	86 – 100 % correct.	
Analysis of Recursive Algorithms	Less than 35% correct.	36 – 60% correct.	61 85% correct.	86 – 100 % correct.	
Application of Critical Thinking to Choosing Appropriate ADTs, Data Structures, and Algorithms	Less than 35% correct.	36 – 60% correct.	61 85% correct.	86 – 100 % correct.	

ADT and Runtime Analysis Rubric

Student Name: _____

Evaluator Name: ______

	UNSATISFACTORY 1	MARGINAL 2	GOOD 3	EXCELLENT 4	SCORE
Grammar and spelling	Many sentences have grammar or spelling errors.	Most paragraphs have a grammar or spelling error.	Most paragraphs have no grammar or spelling errors.	The entire piece has at most two grammar or spelling errors.	
Sentence structure	Run on and awkward sentences occur in most paragraphs.	Some run on and awkward sentences are present. Sentence structure varies little.	Very few run on and awkward sentences are present. Sentence structure is usually varied appropriately.	No run on or awkward sentences. Sentence structure is varied appropriately.	
Paragraph structure	Most paragraphs are incoherent.	Some paragraphs are structured appropriately.	Most paragraphs are structured and obviously coherent.	Every paragraph is begun, developed and concluded appropriately.	
Composition structure	Ideas appear haphazardly or incompletely or are not present. Relationships among ideas are not evident.	Ideas are present but often unrelated. Main points are not evident. Little flow through the composition exists.	Main points are evident and usually related in a logical fashion. Introduction and conclusion are present.	Subject is introduced. Main points are developed. Transitions are made. Conclusions follow from main points.	

Writing Assessment Rubric

Notes:

(1) Content must be graded separately.

Evaluator Name: _____

Computer Ethics Assessment

	UNSATISFACTORY 1	MARGINAL 2	GOOD 3	EXCELLENT 4	SCORE
Ethical Arguments	Ethical arguments do not match the ethical system. (Using a utility argument in Kantianism)	Ethical arguments are appropriate for the ethical system, however the reasoning skills demonstrated are weak or incomplete.	Almost all ethical arguments demonstrate strong reasoning skills in the ethical system. Arguments are mostly complete.	Ethical arguments demonstrate strong reasoning skills in the ethical system. All arguments are complete and concise.	
Primary actors are identified in the professional ethics scenarios.	Little or no identification of primary actors is completed.	Some primary actors are correctly identified.	Most primary actors are correctly identified.	All primary actors are correctly identified.	
Professional responsibilities are identified in professional ethics scenarios.	Few or no professional responsibilities are identified.	Some professional responsibilities are identified, but many are missed or too many extra are listed.	Most professional responsibilities are correctly identified, with few superfluous responsibilities listed.	All professional responsibilities are correctly identified, without superfluous responsibilities listed.	
Ethical resolution of the scenario is identified.	Little or no judgment has been made as to ethical resolution of the scenario	Some judgments are made as to as to the correct ethical resolution of the scenario. Little or no justification for judgments is present.	Mostly correct judgments are made as to as to the correct ethical resolution of the scenario. Most judgments are supported by valid reasoning.	Completely correct judgments are made as to as to the correct ethical resolution of the scenario. All judgments are supported by valid reasoning.	