Bloomsburg University

Computer Science Assessment Report

2019

Introduction

Bloomsburg University of Pennsylvania (BU) is one of fourteen universities in the Pennsylvania State System of Higher Education. BU has approximately 8,250 undergraduate students and 650 graduate students. The Department of Mathematical and Digital Sciences is in the College of Science and Technology (CoST) and services undergraduate students with four undergraduate degree programs and five minors. The department houses twenty-six tenured/tenure-track faculty members, all of whom hold a doctorate degree in their respective fields. The Computer Science program now has 154 majors and is supported by five faculty members.

Academic year	Number of Majors	Number of Graduates
2019 2020	154	Fall 2019 - 4
2018 – 2019	162	25
2017 – 2018	160	19
2016 – 2017	148	7
2015 – 2016	141	22
2014 – 2015	133	20
2013 – 2014	129	16

Enrollment Information at a Glance

Computer Science Program Mission Statement

The Department of Mathematical and Digital Sciences offers a Bachelor of Science degree in computer science. The curriculum is broadly based in core areas of computer science, with an emphasis on the design, analysis, and production of complex and reliable software. Graduates will be prepared to advance in computing careers and lead in technical endeavors, or to pursue an advanced degree in computer science.

Computer Science Program Educational Objectives

Program educational objectives are broad statements that describe the career and professional accomplishments that the computer science program is preparing graduates to achieve.

Three to five years after graduation, our computer science alumni will be:

- 1. be professionally employed in the computing field
- 2. communicate and collaborate effectively in a team environment
- 3. continue to grow professionally by adapting to new technologies and assuming leadership responsibilities

Periodic Review and Revision Process

The Computer Science Curriculum Committee reviews our mission statement and program educational objectives once every five years.

The Computer Science Program's Mission Statement was reviewed during the Fall 2018 semester. Input from the Computer Science Advisory Board along with results of all our other assessments were utilized. We found the Mission Statement to be appropriate and correct. We did remove graduate schools from our list of stakeholders. Although our degree program prepares students to pursue advanced degrees, we don't have the ability to obtain feedback from graduate programs. Our next review is scheduled for Fall 2023.

Computer Science Program Student Learning Outcomes

The Computer Science Program has ten program learning outcomes listed under six categories.

• Software Engineering

- 1. Students will demonstrate strong programming skills involving at least two object--- oriented languages.
- 2. Students will be able to write a significant application that efficiently utilizes a database for data storage and retrieval.
- 3. Students will be knowledgeable about software design processes and methodologies.

• Operating Systems

4. Students will have a strong understanding of operating system concepts.

• Hardware

5. Students will have a strong understanding of computer hardware concepts.

• Problem Solving

- 6. Students will be able to determine what Abstract Data Type (ADT) should be used to solve a problem and what data structure should be used to efficiently implement an ADT.
- 7. Students will be able to analyze the complexity of algorithms.
- 8. Students will be able to solve programming problems.

• Communication

- 9. Students will demonstrate oral and written communication skills necessary to read, write, and speak effectively about concepts in computing.
- Ethics
 - 10. Students will understand ethical and legal issues involving digital technology.

Periodic Review and Revision Process

The Computer Science Curriculum Committee reviews our Student Learning Outcomes once every five years.

The Computer Science Program's Student Learning Objectives were reviewed during the Fall 2018 semester. Input from the Computer Science Advisory Board along with results of all our other assessment were utilized. We found our Student Learning Objectives to be appropriate and correct. Our next review is scheduled for Fall 2023.

Assessment Method	Administered	Frequency	Reviewed	Relevant Outcomes
Major Field Test in Computer Science Assessment	During course COMPSCI 480	Every spring semester	Following fall semester	1, 3, 4, 5, 6, 7, and 8
C++ Assessment	During course COMPSCI 255	Once every 5 years.	Following semester	1
Java Assessment	During course COMPSCI 221	Once every 5 years.	Following semester	1
Database Assessment Starting Spring 2018	During course COMPSCI 357	Once every 5 years.	Following semester	2
ADT and Runtime Analysis Assessment	During course COMPSCI 355	Once every 5 years.	Following semester	6 and 7
Programming Problem Solving Assessment	During course COMPSCI 386	Once every 5 years.	Following semester	8
Communication Skills Assessment	During course COMPSCI 480	Once every 5 years.	Following semester	9

Summary of All Assessment Methods

Ethics Assessment Starting Fall 2017	During Course COMPSCI 360	Once every 5 years.	Following spring semester	10
Graduating Senior Survey Assessment	End of semester	Every Year	Following semester	All
Graduate Assessment	Online Survey	Once every 5 years.	Following semester	All
Employer Assessment	Online Survey	Once every 5 years.	Following semester	All
Advisory Board Meeting	Career Day	Once every 5 years.	Same Semester	All

Assessment Activities and Results

All assessment activities are planned, scheduled, administered, reviewed and discussed by the Computer Science Curriculum Committee. In this section, we list each assessment activity, show the results of the assessments conducted since we started our assessment activities in 2007. We include comments about our students' performance and any changes we are making based on the review of this data.

Review of Mission Statement and Program Educational Objectives (PEO)

This activity was most recently completed during the Fall 2018 semester. The Computer Science Curriculum Committee (CSCC) utilized Advisory Board member comments, alumni survey results and comments, employer survey results and comments, graduating senior survey results, comments from high school computer science educators during our annual programming contest along with a review of the PEO of similar programs at other universities to review our program's educational objectives.

The CSCC determined that our mission statement and PEO are appropriate, accurate, and serve the needs of our program and its constituents. We found the mission statement to be appropriate and correct. We did remove graduate schools from our list of stakeholders. Although our degree program prepares students pursue advanced degree, we don't have the ability to obtain feedback from graduate programs. Our next review is scheduled for Fall 2023.

Review of Student Learning Outcomes

This activity was last completed during the Fall 2018 semester and is scheduled to be completed again during the Fall 2023 semester. The CSCC utilized Advisory Board member comments, alumni survey results and comments, employer survey results and comments, graduating senior survey results, comments from high school computer science educators during our annual programming contest along with a review of our curriculum to review our program's Student Learning Outcomes (SLO).

The CSCC determined that our SLO are still appropriate, accurate, and serve the needs of our program and its constituents.

Advisory Board Meeting

Our last meeting was during Career Day on October 5, 2018 and our next meeting is scheduled for Career Day in October 2019. We hold advisory board meetings to coincide with our Career Day activities which have now grown into a College of Science and Technology event.

The main focus of our meeting was a review of our Computer Science Program's Mission Statement, Program Educational Objectives and Student Learning Outcomes. We also discussed our curriculum, our plans for a new web application development major and what they see as the future needs of employers in computer related fields. We finished with a discussion of how to recruit faculty and utilize graduates to provide seminars on hot topics in computer science.

Advisory Board Members along with their year of graduation, employer and current position

James Campbell '98, Penn State University, Senior Unix Consultant Len Kalechitz '01, Solution Development Firm, LLC, Computer Scientist Scott McCarty '98, OPTiMO Information Technology, LLC, Information Technology Director Matthew Quinn '02, The Pennsylvania State University, Applied Research Laboratory Mike Trelease '06, Geisinger Health System, Program Director Dan Polenik '14, Vanguard, Java Software Engineer Barbara Romano, '83, South Jersey Industries, Director of Application and Project Governance

Computer Science Advisory Board Meeting October 5, 2018 Agenda

- 1. Introductions
- 2. Review of Computer Science Mission Statement and Program Educational Objectives
- 3. Review of Computer Student Learning Objectives
- 4. Review of Computer Science Curriculum
- 5. Comments on our plan for a new Web Application Development major
- 6. How to recruit new faculty Computer Science and Web Design.
- 7. Open Forum

Major Field Test in Computer Science (MFT)

This activity was last administered during the Spring 2019 semester to 26 seniors and will be completed again during the Spring 2020 semester. We currently ask all our seniors to complete this assessment during our senior capstone course, COMPSCI 480, Object---Oriented Software Engineering. Their performance is used to partially determine their final grade in this class. We have found that students take the MFT seriously when it is used as part of their grade in a course. Our students have performed well in this assessment activity. Our department has ranked from the 63rd to the 98th percentile since we first started administering this exam during the 2006 academic year.

Over these thirteen academic years, our average student scored a 155 out of 200 possible points, which places us as a department in the 74th percentile of all participating programs. We originally expected our students to perform in the 50th percentile range, so we are pleased with the performance of our students in this assessment activity.

The table below shows how our students performed collectively in the three major content areas of the MFT during the 2017 academic year. This year our departmental average was 154, which placed us in the 77th percentile out of 132 schools administering this assessment activity. This result exceeded our original expectations and we are proud of how well our students are performing.

Assessment Indicator Number	Assessment Indicator Title	Our Mean Percent	Department Percentile
		Correct	
1	Programming and Software Engineering	62	82
2	Discrete Structures and Algorithms	50	82
3	Systems: Architecture/Operating Systems/Networking/Database	50	83

We have placed additional results from the MFT assessment activity in the appendix.

C++ Assessment

This activity was last administered during the Spring 2019 semester. We assess the students on their abilities in seven major areas of using C++ to solve a programming problem. The students are scored on a 4-point scale with 4 being excellent and 1 being unsatisfactory. The rubric is contained in the appendix. Our goal is to average a score of 3 or better in each category.

	Pointers	STL	File/IO	Operator Overloading	Templates	General OOP	Clarity
2019	2.8	3.0	3.6	3.9	3.7	3.9	3.6
2016	2.67	2.95	2.67	2.62	3.19	2.76	2.76
2013	3.25	3.29	2.83	3.67	3.58	3.33	3.25
2011	3.04	3.39	3.07	3.51	3.72	3.21	2.99
2010	3.14	3.72	3.25	3.58	3.72	3.36	3.03
2007	3.09	2.91	2.55	3.45	3.55	3.64	2.73

C++	Assessment Result	S
-----	-------------------	---

We determined these results are appropriate and acceptable.

Java Assessment

This activity was last administered during the Fall 2016 semester. We modified our assessment assignment and criteria after the 2013 assessment evaluation. We determined it would be better to separate the database activities out of the Java assessment and concentrate on more direct object-oriented criteria. Please see the discussion at the bottom of this page for more information on why we modified the assessment vehicle for this student learning outcome. The students are scored on a 4-point scale with 4 being excellent and 1 being unsatisfactory. The rubrics are contained in the appendix. Our goal is to average a score of 3 or better in each category.

Year	Interface Design	Object- Oriented Design	Generic Class Design	Java Coding Style	Java Documentation	Code	Problem Solution
2016	2.76	3.48	3.14	3.19	2.86	2.81	2.71

Java Assessment Results 2016

Overall, we find the results from 2016 acceptable. We will look to improve our coverage of interface design to help students improve the overall quality of their solutions.

Java Assessment Results 2007 to 2013

Year	Database Design	Object Oriented Design	GUI Design	Java Coding Style	Java Documentation	Code	Problem Solution
2013	2.96	2.67	2.80	3.39	3.13	3.39	3.17
2009	2.18	3.27	2.84	3.36	3.05	2.91	2.82
2007	3.00	2.90	2.90	3.10	2.50	2.75	2.65

In 2013, we determined that the programming assignment used for this activity does not allow us to adequately determine how well our students understand object---oriented design because the project was a complete web application with Java Server Pages and Servlets. We developed a better assessment instrument and rubric for object---oriented design to properly assess our students starting with the 2016 assessment. We removed the database design component out of this assessment vehicle and move it into its own assessment activity. We determined that additional assessment categories for database design and database use in solving a programming problem was appropriate. Overall, we are pleased with the results in five of the seven categories. Curriculum changes completed after the 2007 assessment were implemented to address the low assessment scores in several categories of Java programming (documentation, better coding skills, and problem solutions) and have resulted in a better understanding of these concepts by our students.

ADT and Runtime Analysis

This activity was last administered during the Fall 2017 semester. We assess the students on their abilities to analyze the runtime behavior of iterative algorithms, recursive algorithms and their choice of Abstract Data Types and Data Structures to solve computationally difficult programming problems. The students are scored on a 4-point scale with 4 being excellent and 1 being unsatisfactory. Our goal is to average a score of 3 or better when analyzing iterative algorithms and the choice of ADTs and data structures. We would like the students to average a 2.5 or better when analyzing recursive algorithms. We find that analyzing recursive algorithms is difficult for undergraduates and it is not a major area of stress in courses. The rubric is contained in the appendix.

	2017	2013	2011	2010	2009
Analysis of Iterative Algorithms	3.00	3.43	3.32	1.97	3.38
Analysis of Recursive Algorithms	2.70	2.71	3.05	3.18	2.23
Choice of ADT, D/S, Algorithms	2.75	3.21	3.05	2.75	3.31

ADT and Runtime Analysis Results

We find the results of this assessment activity acceptable, but will monitor future results to determine if any curriculum changes are warranted.

Programming Problem Solving Assessment

This activity was last administered during the Spring 2018 semester. We assess students on their ability to solve five different programming problems in a three-hour time limit. It is essentially a programming contest with teams of size one. We expect our students to solve three of the five problems on average. The problems range in difficulty from easy to difficult. We believe that all students should solve the first problem. Most students should solve the second problem. The average to good students should finish the first three problems. Very good students will be able to solve the first 4 problems in the time allotted, and excellent students can solve all 5. We expect that solving all 5 problems will be a rare event. That has turned out to be true. In the six years we completed this assessment activity, only four students have solved all five problems.

		-
Year	Average Number of	Percentage of students solving each
	Problems Solved	problem (1 to 5) correct*
2018	3.4	96%, 78%, 17%, 57%, 4%
2016	2.8	100%, 92%, 46%, 38%, 8%
2013	3.4	100%, 88%, 59%, 82%, 12%
2012	2.6	93%, 79%, 36%, 50%, 7%
2011	2.6	100%, 58%, 42%, 50%, 8%
2010	2.9	93%, 73%, 53%, 66%, 6%

Programming Problem Solving Assessment Results
--

*Rounding errors may keep these numbers from totaling 100%

Overall, we are pleased with the results of this assessment activity.

Oral Presentation Assessment

This activity was last administered during the Fall 2017 semester. We created our own assessment rubric that considers both how the speaker performs in presentation style and the content of the information being delivered. We have eight aspects of giving a presentation that we determine to be important in the presentation style portion of the assessment and four areas that we deem important in the content category. Students are evaluated over these twelve areas in a range of 1 to 4 to be consistent with all our assessment rubrics. We use a weighted total to yield an overall score out of 100 points to place greater weight on items that we feel are slightly more important than other characteristics of presenting well. The oral presentation assessment rubric is in the appendix. Multiple faculty members rate each student. Each student is given the average score of all the faculty members viewing the presentation and these scores are averaged for the academic year. The table below shows how the students did in each category. We expect our students to average three or above in each category and have a weighted total of 75 or above in this assessment activity.

Year	Number of Students	Personal Appearance	Speaks Clearly	Smooth Transitions	Confident Speaker	Avoids Distractions	Appropriate Vocabulary
2017	28	3.8	3.8	3.4	3.8	3.7	3.7
2015	14	2.79	3.04	2.89	2.96	3.29	3.43
2012	15	3.24	3.3	3.26	2.92	3.29	3.63
2011	10	3.19	3.33	3.2	3.02	3.3	3.78
2010	8	3.55	3.43	3.35	3.29	3.38	3.61
2009	10	3.29	3.10	3.00	3.05	3.06	3.35
2008	12	3.28	3.54	3.15	3.29	3.37	3.62
2007	5	3.12	3.32	2.88	3.12	3.24	3.64

Average Student Scores in our Oral Presentation Assessment

Year	Eye Contact	Maintains Interest	Introduction, Body, and Conclusion	Logically Organized	Visual Aids	Subject Knowledge	Weighted Points
2017	3.8	3.8	3.9	3.9	3.8	3.8	94.00
2015	3.25	3.14	3.32	3.54	2.96	3.36	80.32
2012	3.24	3.15	3.39	3.62	3.34	3.47	84.44
2011	3.02	3.13	3.64	3.82	3.52	3.6	86.93
2010	3.25	3.09	3.45	3.61	3.35	3.65	86.56
2009	2.95	3.08	3.60	3.59	3.39	3.57	83.40
2008	3.33	3.24	3.60	3.61	3.43	3.55	86.62
2007	3.2	3.32	3.4	3.44	3.36	3.4	83.12

We are pleased with our students' performance when giving presentations. This is likely the result of our general education program at Bloomsburg University that stresses communication skills, the overall quality of a student that is needed to complete a computer science major and the fact that our students give short presentations in several computer science classes. We require our students to take Foundations of Writing, Technical Writing and Public Speaking classes as part of their general education requirements along with three laboratory sciences. Students are required to complete weekly lab reports in the lab science courses.

Written Assessment

This activity was last administered during the Spring 2018 semester. We created our own assessment rubric that considers four components of a student's writing ability. Students are evaluated over these four areas in a range of 1 to 4 to be consistent with all our other assessment rubrics. The writing assessment rubric is in the appendix. One computer science faculty member and a technical writing faculty member evaluate each written document and the results are averaged for each student. The table below contains the average of all the writing samples for the academic year. The writing samples are three-to-five page papers written by senior computer science students. We expect our students to average three or above in each category.

	Number of	Grammar &	Sentence	Paragraph	Composition	
	students	Spelling	Structure	Structure	Structure	Average
2018	19	3.12	3.28	3.29	3.24	3.23
2015	19	2.29	2.36	2.78	2.72	2.54
2012	14	3.00	3.07	3.36	3.63	3.26
2011	8	3.28	3.03	3.53	3.53	3.34
2010	8	3.38	3.16	3.47	3.53	3.38
2009	9	3.01	2.99	3.11	3.26	3.03

Writing Assessment Results

Overall, we are pleased with our student's writing ability. The most recent evaluation has given us some cause for concern. We will continue to monitor this assessment activity to see if a downward trend continues. Similar to our student's public speaking abilities, the usual high level of skills is likely the result of several factors. Some of these factors include an appropriate general education program that stresses communication skills along with multiple classes that provide the students with opportunities to express their ideas in written form along with feedback on their work. The fact that we have a technical writing faculty member in our department is also a plus.

Ethics Assessment

This activity was last administered during the Fall 2017 semester in COMPSCI 360, Computer Ethics, Social Impact and Security. Junior computer science students were assessed on their ability to create a logical argument using one of five viable ethical systems and they also were given an ethical scenario and needed to identify the primary actors (stakeholders) in the scenario, which ethical clauses most directly apply, and what is appropriate resolution based on the ACM Software Engineering Code of Ethics. The rubric is in the appendix.

Year	Ethical	Identify	Professional	Ethical
	Arguments	Primary Actors	Responsibilities	Resolution
2017	2.89	3.48	3.26	3.52

Our juniors exhibited a reasonable understanding of viable ethical systems and how to make a reasonable ethical argument in that system. They handled the scenarios very well. We would like to see our students score a 3 or better on this assessment.

Original Ethics Assessment

This assessment activity used to be given at the end of a 1- credit course during the student's first semester on campus. They are also given similar final exam questions. We wanted to see our students score a three or better for each scenario. The results of this assessment are shown below.

Year	Students	Scenario 1	Scenario 2	Scenario 3
2013	43	2.35	2.44	2.72
2009	25	2.88	3.44	2.68

Ethics Assessment Results

Our freshmen did not meet our expectations in this assessment. Part of the issue is that they are freshmen and this is a one credit class that meets 50 minutes a week for 14 weeks. We are also trying to cover too much material in this one---credit freshmen class. The students are assessed during the course, so they do not have any additional time to reflect on the knowledge or apply it in other classes. They also do not have any real experience with ethical situations regarding the use of technology. We have removed this one credit freshmen class from our curriculum and have replaced it with a three---credit junior level course. This will give us additional class time to cover computer ethics and the impact of computers on society. The students will also have a richer set of experiences to draw from during class discussions. The Fall 2014 freshmen class will be the first cohort of students with this new requirement.

Senior Exit Survey

This survey was last given during the Fall 2019 semester. We ask our graduating seniors to complete a survey as part of their graduation process. This survey is in the appendix. We ask our students for their opinions about their experience at BU and our program. The students state their thoughts on how well our program prepared them overall as a computer scientist and how well prepared they feel in particular areas that related to our student learning outcomes. The students are given four choices and these responses are translated into a 1 to 4 scale with four being excellently prepared and one being poorly prepared. We strive for students to rate their abilities at a three or above for each of the categories. A tabulation of the student responses are shown in the two tables below. Students also provide us with many written comments that we discuss during Computer Science Curriculum Committee meetings.

				Database	Software	OS		Problem
Year	OOP	Java	C++	Applications	Design	Concepts	Hardware	Solving
2018 - 2019	3.55	3.45	2.5	2.55	2.65	3.0	1.90	3.45
2017 - 2018	3.75	3.75	2.75	2.25	2.25	3.50	2.54	3.75
2015 - 2016	3.52	3.52	2.91	2.39	2.48	2.83	2.26	2.91
2014 - 2015	3.95	3.85	3.05	2.80	3.15	2.80	2.45	3.75
2013 - 2014	3.79	3.93	3.14	2.86	3.29	2.86	2.64	3.64
2012 - 2013	3.43	3.57	2.50	2.64	2.93	3.38	2.29	3.43
2011 - 2012	3.60	3.60	2.70	2.70	3.10	2.56	2.50	3.50
2010 - 2011	3.77	3.69	3.00	2.85	3.08	3.08	2.77	3.69
2009 - 2010	3.55	3.45	2.73	2.73	3.18	2.82	2.73	3.18

Year	Algorithms	Oral & Written Communication	Ethical and Legal Aspects	Overall Prepared	Students Completing Survey
2018 - 2019	2.55	2.90	3.05	2.9	20
2017 - 2018	2.75	3.25	2.75	2.5	4
2015 - 2016	2.78	3.13	2.87	3.08	23
2014 - 2015	3.05	2.95	2.90	3.25	20
2013 - 2014	3.14	3.36	3.29	3.43	14
2012 - 2013	3.07	2.86	2.85	3.21	14
2011 - 2012	3.10	3.10	2.80	3.20	10
2010 - 2011	3.46	3.31	3.15	2.92	13
2009 - 2010	2.82	2.64	3.00	3.09	11

Overall, the students are positive about their experiences in our program. Our curriculum is weighted towards software development and programming skills. We only have one required

hardware course and one course on operating systems concepts. We find the student perceptions match our own view on our curriculum and its strengths and weaknesses.

Alumni Survey

This activity was last administered during the Spring 2017 semester. We emailed alumni who graduated in 2011 to 2014 to complete an anonymous survey. Thirty-three alumni responded and their responses are summarized in the table below. They were asked to rate themselves and their responses were converted into numbers with 4 being excellently prepared or having excellent skills and 1 being poorly prepared or having poor skills. We would like to see our alumni rate themselves at the equivalent of a 3 (good) or higher in each category. An exported version of the Qualtrics survey they completed is contained in the appendix. The online version is formatted differently, but this version will show the reader how questions were phrased.

	ООР	Java	C++	Database Application	Software Engineering	OS Concepts	Hardwar
2017	3.4	3.4	2.5	2.7	3.1	2.6	2.8
	Algorithms	Problem Solving	Oral & Written	Overall Prepared	Team Player	Adapt to New Technologies	Leaders hip Skills
2017	2.8	3.6	3.3	3.0	3.4	3.6	3.0

2017 Alumni Survey Results Thirty-three Alumni Responded Four Point Scale

25% of the students reported taking graduate classes.

The survey results are as we expected. We will continue to monitor these results as well as the senior exit survey to see if any curriculum modifications are needed.

2013 Alumni Survey Results Twenty-seven Alumni Responded

	ООР	Java	C++	Database Applications	Software Design	OS Concepts	Hardware
2013 Survey	3.7	3.5	2.8	2.9	3.3	2.6	2.7
	Algorithms	Problem Solving	Oral & Written Communication	Overall Prepared	Team Player	Adapt to New Technologies	Leadership Skills
2013 Survey	3.0	3.8	3.3	3.0	3.7	3.7	3.4

Graduates Who Graduated in 2010 or earlier were asked to respond to this Survey. The survey results were basically what we expected. It seems many of our graduates are not in application areas that utilize the C++ language and the graduates who responded feel their skills in C++ are below their skills in Java.

Employer Survey

This survey was activated during the Fall 2013 semester. Nine supervisors responded indicating that they supervised a total of 38 graduates of our program. It makes sense that employers who have multiple individuals from BU would be more inclined to respond to our survey and report their observations. This survey is included in the appendix. We asked the supervisors to rate our graduates over thirteen areas that relate to our Program Educational Objectives and our Student Learning Outcomes. The rankings were converted to a fourpoint scale with excellent skills being a 4 and poor skills being a 1. We expect our graduates to be at a level equivalent to a 3 (good) or higher three to five years after graduation. The following table shows the average of the employers' responses in the top column and the weighted average that multiplies each supervisor's rating by the number of graduates supervised.

	I				1	I	I
2013 Survey	ΟΟΡ	Java	C++	Database Applications	Software Design	OS Concepts	Hardware
Average Rating	3.6	3.5	3.0	3.3	3.3	3.3	3.0
Weighted Average	3.9	3.8	2.9	3.6	3.0	3.4	3.3
	Algorithms	Problem Solving	Oral Communication	Written Communication	Team Player	Adapt to New Technologies	Leadership Skills
Average Rating	3.3	3.4	2.9	3.1	3.1	3.6	2.4
Weighted Average	3.7	3.8	2.9	3.7	3.8	3.7	2.7

Employer Survey Results Nine Supervisors reporting on 38 graduates

For the most part, the employer responses are what we expected, but it was slightly more difficult getting them to respond than we anticipated. We are surprised that the Oral Communication rating is below a 3.

Student Learning Outcome	Assessment Comments
SLO 1: Students will demonstrate strong programming skills involving at least two object oriented languages.	Satisfied. Evidence to support the satisfactory completion of this learning outcome by our students is contained in the following assessments. Java Assessment C++ Assessment MFT Assessment Senior Exit Survey Alumni Survey Employer Survey
SLO 2: Students will be able to write a significant application that efficiently utilizes a database for data storage and retrieval.	Satisfied. Evidence to support the satisfactory completion of this learning outcome by our students is contained in the following assessments. Java Assessment MFT Assessment Senior Exit Survey Alumni Survey Employer Survey

Summary of Student Learning Outcomes (SLO) Assessments

SLO 3: Students will be knowledgeable about software design processes and methodologies	Satisfied. Evidence to support the satisfactory completion of this learning outcome by our students is contained in the following assessments. Java Assessment C++ Assessment MFT Assessment Senior Exit Survey Alumni Survey Employer Survey
SLO 4: Students will have a strong understanding of operating system concepts.	Satisfied. Evidence to support the satisfactory completion of this learning outcome by our students is contained in the following assessments. MFT Assessment Senior Exit Survey Alumni Survey Employer Survey
SLO 5: Students will have a strong understanding of computer hardware concepts	Satisfied. Evidence to support the satisfactory completion of this learning outcome by our students is contained in the following assessments. MFT Assessment Senior Exit Survey Alumni Survey Employer Survey

SLO 6: Students will be able to determine what Abstract Data Type (ADT) should be used to solve a problem and what data structure should be used to efficiently implement an ADT. Students will be able to solve programming problems.	Satisfied. Evidence to support the satisfactory completion of this learning outcome by our students is contained in the following assessments. MFT Assessment Program Problem Solving Assessment ADT and Runtime Analysis Assessment Senior Exit Survey Alumni Survey Employer Survey
SLO 7: Students will be able to analyze the complexity of algorithms	Satisfied. Evidence to support the satisfactory completion of this learning outcome by our students is contained in the following assessments. MFT Assessment ADT and Runtime Analysis Assessment Senior Exit Survey Alumni Survey Employer Survey
SLO 8: Students will be able to solve programming problems.	Satisfied. Evidence to support the satisfactory completion of this learning outcome by our students is contained in the following assessments. MFT Assessment Program Problem Solving Assessment ADT and Runtime Analysis Assessment Senior Exit Survey Alumni Survey Employer Survey

SLO 9: Students will demonstrate oral and written communication skills necessary to read, write, and speak effectively about concepts in computing.	Satisfied. Evidence to support the satisfactory completion of this learning outcome by our students is contained in the following assessments. Oral Communication Assessment Written Communication Assessment Senior Exit Survey Alumni Survey Employer Survey
SLO 10: Students will understand ethical and legal issues involving digital technology.	Satisfied Evidence to support the satisfactory completion of this learning outcome by our students is contained in the new Ethical Assessment. We added a three-credit course on Computer Ethics, Social Impact and Security to replace a one credit course on Computer Ethics. We also move the target audience from freshmen to juniors. The extra class time devoted to these topics and the increased maturity of the students has made a positive difference in their understanding of these concepts.

Satisfactory completion of a SLO assessment does not imply that we are not making improvements to our curriculum in these areas. It just means that the results indicate that we are enabling our students to demonstrate an understanding of these concepts and put them appropriately into action. We are continually looking for ways to improve our curriculum and our students' abilities and education.

Appendix

Major Field Test - Computer Science (4LMF) Item Information Report Administration Date Range: December 2015 - June 2017 Bloomsburg University Number of Test Takers = 32

ltem		Item Percent Perc				
Section	Number ^(a)	Correct	rect Correct Domain		Content Area	ltem Manning
		Institution	National ^(b)			Mapping
1	1	37.5	19.9	Programming	nming Programming fundamentals	
1	2	65.6	63.9	Programming	Programming fundamentals	A1
1	3	62.5	64.6	Discrete structures	Proof techniques	A2
1	4	62.5	59.4	Algorithms/complexity	Automata theory	A2
1	5	53.1	47.3	Systems	Architecture	A3
1	6	84.4	65.1	Information management	Data modeling	A3
1	7	84.4	75.2	Software engineering	Req/spec/design/val/mgmt	A1
1	8	43.8	34.4	Discrete structures	Counting/number theory	A2
1	9	25.0	41.6	Other	Graphics	
1	10	59.4	46.2	Algorithms/complexity	Adv data str/algorithms	A2
1	11	87.5	63.9	Systems	Architecture	A3
1	12	68.8	62.2	Programming	Programming languages	A1
1	13	25.0	40.2	Algorithms/complexity	Adv data str/algorithms	A2
1	14	68.8	48.3	Algorithms/complexity	Automata theory	A2
1	15	84.4	72.8	Discrete structures	Basic logic	A2
1	16	93.8	78.7	Information management	Data modeling	A3
1	17	65.6	44.0	Systems	Operating systems	A3
1	18	90.6	51.7	Programming	Programming fundamentals	A1
1	19	28.1	34.7	Information management	Data modeling	A3
1	20	84.4	81.5	Programming	Programming fundamentals	A1
1	21	46.9	59.3	Other	Security	
1	22	65.6	50.2	Programming	Programming fundamentals	A1
1	23	31.2	36.4	Systems	Operating systems	A3
1	24	75.0	64.6	Algorithms/complexity	Adv data str/algorithms	A2
1	25	68.8	56.3	Algorithms/complexity	Automata theory	A2
1	26	43.8	42.5	Discrete structures	Counting/number theory	A2
1	27	21.9	15.1	Algorithms/complexity	Adv data str/algorithms	A2
1	28	12.5	19.5	Systems	Architecture	A3
1	29	12.5	18.7	Systems	Architecture	A3
1	30	53.1	47.0	Programming	Programming languages	A1
1	31**					
1	32	15.6	28.4	Algorithms/complexity	Adv data str/algorithms	A2
1	33	61.3	61.8	Discrete structures	Proof techniques	A2
2	1	37.5	43.7	Software engineering		A1

2	2	50.0	43.8	Discrete structures	Discrete probability	A2
2	3	9.4	13.9	Algorithms/complexity	Basic computability/complexity	A2
2	4	93.8	89.0	Programming	Programming fundamentals	A1
2	5	34.4	24.3	Programming	Programming fundamentals	A1
2	6	31.2	28.5	Systems	Architecture	A3
2	7	81.2	63.0	Programming	Programming languages	A1
2	8	68.8	49.6	Discrete structures	Functions/relations/sets	A2
2	9	81.2	65.1	Programming	Programming fundamentals	A1
2	10	43.8	48.3	Algorithms/complexity	Adv data str/algorithms	A2
2	11	59.4	57.2	Algorithms/complexity	Automata theory	A2
2	12	40.6	33.9	Information management	Data modeling	A3
2	13	31.2	38.0	Discrete structures	Discrete probability	A2
2	14	50.0	41.1	Programming	Programming fundamentals	A1
2	15	53.1	56.8	Programming	Programming fundamentals	A1
2	16	53.1	33.1	Systems	Operating systems	A3
2	17	65.6	61.9	Systems	Architecture	A3
2	18	93.8	68.3	Programming	Programming fundamentals	A1
2	19	31.2	27.1	Software engineering	Req/spec/design/val/mgmt	A1
2	20	43.8	41.4	Systems	Architecture	A3
2	21**					
2	22	59.4	53.4	Programming	Programming languages	A1
2	23	43.8	44.7	Programming	Programming fundamentals	A1
2	24	21.9	29.1	Discrete structures	Graphs/trees	A2
2	25	37.5	25.5	Algorithms/complexity	Basic computability/complexity	A2
2	26	15.6	23.7	Discrete structures	Functions/relations/sets	A2
2	27	77.4	69.2	Programming	Programming fundamentals	A1
2	28	45.2	53.3	Information management	Database systems	A3
2	29	58.1	62.9	Other	Intelligent systems	
2	30	38.7	31.2	Programming	Programming fundamentals	A1
2	31	25.8	34.0	Algorithms/complexity	Adv data str/algorithms	A2
2	32	58.1	47.5	Discrete structures	Basic logic	A2
2	33	19.4	24.9	Systems	Architecture	A3

(a) The total Computer Science test consists of 66 items. Items not scored are denoted by a double asterisk "**".

(b) Based on Comparative Data population for this form. Data ranges in date from September 2015 thru June 2016.

There are 3 Assessment Indicators (A).

A1 --- Programming and Software Engineering

A2 --- Discrete Structures and Algorithms

A3 --- Systems: Architecture/Operating Systems/Networking/Database

Major Field Test --- Computer Science (4HMF)

Item Information Report

Administration Date Range: April 2012 --- April 2014

Bloomsburg University

Number of Test Takers = 48

	ltem	Percent Correct	Percent Correct	Percent	Percent Not		
Section	Number ^(a)	Institution	National ^(b)	Omit	Reached	Domain	Content Area
1	1	35.4	22.2	0	0	Programming	Programming fundamentals
1	2	27.1	26.2	2.1	0	Discretestructures	Functions/relations/sets
1	3	62.5	61.0	0	0	Software engineering	Req/spec/design/val/mgmt
1	4	79.2	56.7	0	0	Algorithms/complexity	Automatatheory
1	5	60.4	52.0	0	0	Systems	Architecture
1	6	81.2	68.9	0	0	Programming	Programming fundamentals
1	7	89.6	79.7	0	0	Programming	Programming fundamentals
1	8	35.4	35.1	0	0	Discretestructures	Counting/number theory
1	9	43.8	43.0	2.1	0	Other	Graphics
1	10	47.9	30.9	2.1	0	Systems	Operatingsystems
1	11	68.8	49.2	0	0	Algorithms/complexity	Basic computability/complexity
1	12	62.5	60.4	0	0	Programming	Programming languages
1	13	33.3	43.6	0	0	Algorithms/complexity	Adv data str/algorithms
1	14	87.5	63.4	0	0	Programming	Programming languages
1	15	33.3	22.0	0	0	Discretestructures	Basic logic
1	16	89.6	77.4	0	0	Information management	Data modeling
1	17	47.9	45.1	0	0	Systems	Operatingsystems
1	18	93.8	58.5	0	0	Programming	Programming fundamentals
1	19	35.4	38.7	0	0	Algorithms/complexity	Adv data str/algorithms
1	20	37.5	41.9	0	0	Discretestructures	Graphs/trees
1	21	12.5	11.7	0	0	Systems	Architecture
1	22	91.7	72.3	0	0	Information management	Database systems
1	23	35.4	27.8	0	0	Systems	Operatingsystems

Section	ltem Number ^(a)	Percent Correct Institution	Percent Correct National ^(b)	Percent Omit	Percent Not Reached	Domain	Content Area
1	24	70.8	64.1	0	0	Algorithms/complexity	Adv data str/algorithms
1	25	95.8	87.4	0	0	Discretestructures	Basic logic
1	26	33.3	30.0	0	0	Systems	Networking
1	27	50.0	51.0	0	0	Software engineering	Req/spec/design/val/mgmt
1	28	25.0	24.3	0	0	Systems	Architecture
1	29**						
1	30	66.7	45.1	2.1	0	Programming	Programming languages
1	31	25.0	27.4	0	0	Algorithms/complexity	Automatatheory
1	32**						
1	33	60.9	61.4	0	4.2	Discretestructures	Proof techniques
2	1	33.3	55.6	0	0	Software engineering	
2	2	52.1	43.2	0	0	Discrete structures	Discrete probability
2	3	14.6	15.0	0	0	Algorithms/complexity	Basic computability/complexity
2	4	72.9	60.7	0	0	Programming	Programming fundamentals
2	5	64.6	50.3	0	0	Systems	Architecture
2	6	29.2	28.5	0	0	Systems	Architecture
2	7	43.8	35.2	0	0	Other	Intelligentsystems
2	8	64.6	48.9	0	0	Discretestructures	Functions/relations/sets
2	9	70.8	58.2	0	0	Systems	Architecture
2	10	87.5	72.7	0	0	Programming	Programming fundamentals
2	11	16.7	27.0	0	0	Discretestructures	Functions/relations/sets
2	12	10.4	11.7	0	0	Systems	Architecture
2	13	39.6	41.1	0	0	Information management	Database systems
2	14	33.3	35.6	0	0	Algorithms/complexity	Automata theory
2	15	50.0	35.2	0	0	Programming	Programming fundamentals
2	16	47.9	35.7	0	0	Systems	Operatingsystems
2	17	25.0	33.3	0	0	Algorithms/complexity	Adv data str/algorithms
2	18	37.5	34.7	0	0	Algorithms/complexity	Automata theory
2	19	81.2	62.5	0	0	Programming	Programming fundamentals

Section	ltem Number ^(a)	Percent Correct Institution	Percent Correct National ^(b)	Percent Omit	Percent Not Reached	Domain	Content Area
2	20	47.9	43.7	0	0	Systems	Architecture
2	21	14.6	26.2	0	0	Algorithms/complexity	Adv data str/algorithms
2	22	72.9	53.7	0	0	Programming	Programming languages
2	23	60.4	55.3	0	0	Discretestructures	Counting/number theory
2	24	39.6	25.7	0	0	Programming	Programming languages
2	25	50.0	37.6	0	0	Discretestructures	Graphs/trees
2	26	14.6	29.9	0	0	Software engineering	Req/spec/design/val/mgmt
2	27	12.5	15.5	0	0	Algorithms/complexity	Automata theory
2	28	72.9	59.4	0	0	Information management	Database systems
2	29	14.6	20.8	0	0	Software engineering	
2	30	43.8	32.3	0	0	Programming	Programming fundamentals
2	31	22.9	35.2	0	0	Algorithms/complexity	Adv data str/algorithms
2	32	55.3	49.3	0	2.1	Discretestructures	Basic logic
2	33	19.6	28.6	0	4.2	Systems	Networking

(a) The total Computer Science test consists of 66 items. Items not scored are denoted by a double asterisk "**".

(b) Based on Comparative Data population for this form. Data ranges in date from September 2011 thru June 2013.

There are 3 Assessment Indicators (A).

A1 --- Programming and

Software Engineering A2 ---

Discrete Structures and

Algorithms

A3 --- Systems: Architecture/Operating Systems/Networking/Database

Copyright© 2010 by Educational Testing Service. All rights reserved. ETS and the ETS logo are registered trademarks of Educational Testing Service (ETS).

Appendix Assessment Rubrics

	Department	of Mathen	natical and D	igital Sci	iences			
	Oı		ation Assessi					
Speaker:		E	valuator:					
Presentation Topic:		C	ate:					
Evaluation Scale:	4	3		2				
	1							
	Exemplary	Good	Marginal	Unsatis	factory			
		Present	ation Style					
	Criteria			Score	Weight	Total		
1. Personal appeara	nce is approp	riate.	_		1			
2. Speaks clearly an	d with sufficie	nt volume.	Articulates					
words well.			_		2			
3. Smooth transitior	ns between top	oics. Limits	the use of fill	er				
words ("ums").			_		2			
4. Uses engaging vo	calizations. Co	onfident spe	aker.		1			
5. Avoids distracting		-			2			
presentation.			—					
6. Uses audience ap	propriate voca	abulary, cor	tent, and sty	/le.				
· · · · · · · · · ·		,,		-	2			
7. Maintains approp	oriate eve cont	act with au	dience.		1			
8. Maintains audien	•			<u> </u>	1			
	ation Style W	eighted Tot	al –		-			
		-	ontent					
	Criteria			Score	Weight	Total		
9. Presentation inclu	udes introduct	ion, body a	nd conclusio	n.	-			
		•	_		3			
10. Content is logica	ally organized.		_		3			
11. Visual aids or pr		terials enha	ance					
presentation.					3			
•	ubiect knowled	lge, easily i		and	-			
12. Demonstrates subject knowledge, easily understands and answers questions on the topic. Clearly well prepared. 4								
Responds effectivel	•	•	<u>-</u>		•			
•	ent Score Weig							
			Weighte	d Total		/100		

Computer Science Graduating Senior Survey Bloomsburg University of Pennsylvania Department of Mathematical and Digital Sciences

Note: Completion of this survey is required to complete your application to graduate. Information gathered from this survey will be used in the assessment of our Computer Science program.

							
Na	me						
Dat	te						
-	rmanent illing						
	dress						
	rmanent						
Em	ail Address						
1.	I entered the computer science program as a:	New Freshme	en		Transfer (Fro	om a Community college)	
		Transfer (From	n a 4year	college)	Other		
2.	How many semesters in	Semesters	Explain:				
	our program did it take						
	you to graduate? (If mo						
	than 8, please explain w	/hy)					
3.	Did you participate in a	n	Describe:				
5.	internship? If so, descri	Yes	Describe.				
		No					
4.	Were you employed as	an	Where:				
	undergraduate? If so,	Yes					
	where? And how many		Hours a v	veek:			
	hours a week did you work?	No					
5.	What sector are you	Corporato		Concultin	~ 🗖	Education	
	headed for upon	Corporate		Consulting			
	graduation?	Government		Graduate School		Other	
6.	Who will be your emplo	oyer					
	(Graduate School) upon						
<u> </u>	graduation?						
7.	What interval do you expect your salary to be	\$0\$20,000		\$40,000	\$60,000	\$80,000 \$100,000	
	in?	\$20,000 \$40),000	\$60,000	\$80,000	\$100,000 or more	
8.	How do you feel our program has prepared y	a. Very	Prepared		b.	Reasonably Prepared	
	for your next step?		c. Somewhat Prepared		d. Poorly Prepared		
9.	If you feel inadequately						
	prepared, tell us why.						
1			29				

10.	Describe what you liked least about our program?					
11.	What did you like best					
	about our program?					
12.	What concrete suggestions do you have for the department to better serve our students?					
13.	Please assess how well we have	ave prepared you o	on the follow	wing criteria		
•	ObjectOriented Programmin	g Skills	Poor	Satisfactory	Good	Excellent
•	Programming skills in Java		Poor	Satisfactory	Good	Excellent
•	Programming skills in C++		Poor	Satisfactory	Good	Excellent
•	Ability to write a significant data application	atabase	Poor	Satisfactory	Good	Excellent
•	Knowledge of software design methodologies	processes and	Poor	Satisfactory	Good	Excellent
•	Knowledge of operating syste	ms concepts	Poor	Satisfactory	Good	Excellent
•	Understanding of computer h	ardware	Poor	Satisfactory	Good	Excellent
•	Problem Solving skills		Poor	Satisfactory	Good	Excellent
•	Proficiency in algorithms and	data structures	Poor	Satisfactory	Good	Excellent
•	Proficiency in oral and written of technical information	n communication	Poor	Satisfactory	Good	Excellent
•	Understanding of ethical issue computing	s related to	Poor	Satisfactory	Good	Excellent

14. Place any additional comments here.

The following is an exported survey from Qualtrics. It is formatted differently on the web when completed by our graduates.

Computer Science Program Alumni Survey

1 Your Name (Optional)

2 Your Email Address (Optional)

3 We would like to survey the supervisors of our graduates. If you are willing to have us ask your supervisor to complete a short survey, then please provide us with your supervisor's name and email address.

4 What was your year of graduation?

00 2015

00 2014

00 2013

00 2012

00 2011

00 2010

00 2009

00 2008

00 2007

00 2006

00 2005

00 Before 2005

5 What majors did you complete at Bloomsburg University? (check all that apply)

D Computer Science

Digital Forensics

□ ■ Mathematics

Generation Other

6 What minors did you complete at Bloomsburg University? (check all that apply)

D Computer Science

Digital Forensics

□□ Mathematics

D Statistics

• Other _____

7 What extra---curricular activities did you complete at while at Bloomsburg University? (check all that apply)

□□ I completed an internship.

I was involved with the ACM club.

I completed an Independent Study course.

I was involved in research with a faculty member.

8 We welcome any comments about your participation in extra---curricular activities sponsored by the department. What was interesting? What was useful?

9 Which phrase best describes how well the CS major prepared you for your career?

- **OO** Very well prepared.
- **OO** Reasonably prepared.
- **OO** Somewhat prepared.
- **OO** Not very prepared.
- **OO** Not at all prepared.

10 How would you rate your abilities in the following areas?

	Excellent (4)	Good (3)	Satisfactory (2)	Poor (1)	N/A ()
Leadership Skills	00	00	00	00	00
Ability to adapt to new technologies	00	00	00	00	00
Ability to work in a team environment	00	00	00	00	00
Object Oriented programming	00	00	00	00	00
Java programming	00	00	00	00	00
C++ programming	00	00	00	00	00
Database design and implementation	00	00	00	00	00
Software engineering	00	00	00	00	00
Operating systems knowledge	00	00	00	00	00
Computer hardware knowledge	00	00	00	00	00
Algorithms and data structures knowledge	00	00	00	00	00
Problem solving	00	00	00	00	00
Oral communication	00	00	00	00	00
Written communication	00	00	00	00	00

11 Did you continue your education after graduating Bloomsburg University?

- □□ I have not attended graduate school
- **I** currently attend or I have attended graduate school
- □□ I earned a Masters Degree
- **I** earned or plan to earn a Doctorate Degree

12 We welcome any additional feedback you could provide on the Bloomsburg University Computer Science program. The following is an exported survey from Qualtrics. It is formatted differently on the web when completed by our graduates.

Computer Science Program Employer Survey

1 Company Name (Optional)

2 Your Name and Position (Optional)

3 How many Bloomsburg University Computer Science Students do you supervise?

4 How would you rate Bloomsburg University graduates in the following areas?

	Excellent	Good	Satisfactory	Poor	N/A
Leadership Skills	00	00	00	00	00
Ability to adapt to new technologies	00	00	00	00	00
Ability to work in a team environment	00	00	00	00	00
Object Oriented programming skills	00	00	00	00	00
Java programming skills	00	00	00	00	00
C++ programming skills	00	00	00	00	00
Database design and implementation skills	00	00	00	00	00
Software engineering skills	00	00	00	00	00
Operating systems knowledge	00	00	00	00	00
Computer hardware knowledge	00	00 35	00	00	00
Algorithms and		55			

data structures knowledge	00	00	00	00	00
Problem solving skills	00	00	00	00	00
Oral communication skills	00	00	00	00	00
Written communication skills	00	00	00	00	00

5. We welcome any additional feedback you could provide on the Bloomsburg University Computer Science program or its graduates.

Student name: _____

C++ Assessment Rubric

	UNSATISFACTORY 1	MARGINAL 2	GOOD 3	EXCELLENT 4	SCORE
Pointers, operations on linked data structures, memory management	There is little or no demonstrated understanding of how to perform dynamic memory allocation or manipulate pointers.	There are missing or grossly incorrect functions and/or obvious errors that could cause memory leaks.	There are subtle errors that could lead to memory leaks but all functions are implemented and functional.	There are no potential memory leaks. Destructor, copy constructor, and assignment operator implemented correctly.	
STL iterators and sorting algorithms	STL is not used.	An STL vector and indexing is used instead of the required list class.	An STL list and an iterator are used with at most minor errors.	An STL list and iterator are used correctly and the list of objects is sorted properly.	
File I/O	Does not read any information from the input file.	Does not use C++ stream objects for file I/O, crashes, and/or does not read and store all the data in the file.	Uses C++ stream objects for file I/O, successfully reads and stores all the data in the file.	Uses C++ stream objects for file I/O, successfully reads and stores all the data in the file, using the most appropriate kind of loop, and closes the file.	
Operator overloading (and complexity requirement for operator+)	There is little or no demonstrated understanding of how to overload operators and/or how to invoke them.	There are significant gaps in knowledge of how to overload operators and/or how to invoke them. Operator+ does not meet the complexity requirement.	The operator overloading is generally correct, but the complexity requirement for operator+ is not met.	The required operators are correctly overloaded, and the complexity requirement for operator+ is met.	
Templates	No attempt to implement a template class.	Major errors resulting in a non-functional template class, e.g., a member function is not a template function.	No major errors; the template class can be instantiated and is functional.	No functional errors, and uses recommended coding conventions.	
General OOP principles	Incorrect parameter and return value types, global variables or other details that subvert the idea of information hiding, incorrect use of const.	Highly non-cohesive interface. No understanding of when/why to declare references and methods const. Member functions not focused on their particular responsibilities.	Public interface contains one or two member functions not related to the concept represented by the class. Member functions or references not consistently declared const when they should be.	Parameters and return values are declared with appropriate types. Const is used where appropriate. No global variables or other hacks to violate information hiding. Clear separation of public interface and private implementation. Cohesive public interface.	
Clarity	There are significant deviations from coding standards throughout. Many parts of the code are undocumented, overly complex, and/or cannot be understood without judgment or guesswork.	There are significant deviations from coding standards. The code is disorganized or poorly documented, and difficult to understand in places.	The code is generally easy to read, but in some cases there may be insufficient documentation, unusual or inconsistent indentation, cluttered or overly complicated code, or other minor deviations from coding standards.	The code is professionally written: neatly organized, easy to read and understand, with correct indentation, reasonable choices for identifiers, and internal documentation to explain non-obvious details of the logic or its implementation.	

Java Assessment Rubric

	UNSATISFACTORY 1	MARGINAL 2	Good 3	EXCELLENT 4	SCORE
Implementing Interfaces	No attempt to implement the <i>Comparable</i> interface	Incorrectly implemented the <i>Comparable</i> interface	The <i>Comparable</i> interface is implemented correctly in most instances and classes.	The Comparable interface is implemented correctly in all the appropriate classes.	
Object-Oriented Design	Difficult to follow design.	Some good design elements, but many design problems are evident.	Reasonable class design, but some design problems are evident.	Excellent class design throughout the entire project.	
Generic Class Design	No attempt to introduce generic types	Generic types are introduced, but there are many problems with their specifications and implementations.	Generic types are introduced and they are used correctly in most instances.	Generic types are introduced and the types are used correctly in all instances.	
Java Coding Style (Programs are available to check for coding style)	No style	Many style faults	Most style conventions are followed. Most identifier names are appropriate. Most constants declared correctly.	All coding follows standard style conventions. All identifier names are appropriate. All constants are declared correctly.	
JavaDoc Documentation	Minimal java documentation. Most methods are not completely commented.	Many methods are not correctly documented.	Most methods are commented correctly and completely.	Each method and class has appropriate descriptions. All meta tags are correctly completed.	
Code	Code does not execute.	Code executes, but many implemented methods do not perform correctly.	Most implemented methods perform correctly.	The entire program is correct. All methods are implemented correctly.	
Problem Solution	Many program requirements are not completed.	Most requirements are completed, but few are correct.	Solution is well done; most requirements are completed correctly.	All program requirements are completed. Program is easy to use.	

Student Name: ______Evaluator Name: _____

	UNSATISFACTORY	MARGINAL	SATISFACTORY	EXCELLENT	SCORE
	1	2	3	4	SCORE
Analysis of Iterative Algorithms	Less than 35% correct.	36 – 60% correct.	61 85% correct.	86 – 100 % correct.	
Analysis of Recursive Algorithms	Less than 35% correct.	36 – 60% correct.	61 85% correct.	86 – 100 % correct.	
Application of Critical Thinking to Choosing Appropriate ADTs, Data Structures, and Algorithms	Less than 35% correct.	36 – 60% correct.	61 85% correct.	86 – 100 % correct.	

ADT and Runtime Analysis Rubric

Student Name: ______ Evaluator Name: _____

Writing Assessment Rubric

	UNSATISFACTORY 1	MARGINAL 2	GOOD 3	EXCELLENT 4	SCORE
Grammar and spelling	Many sentences have grammar or spelling errors.	Most paragraphs have a grammar or spelling error.	Most paragraphs have no grammar or spelling errors.	The entire piece has at most two grammar or spelling errors.	
Sentence structure	Run on and awkward sentences occur in most paragraphs.	Some run on and awkward sentences are present. Sentence structure varies little.	Very few run on and awkward sentences are present. Sentence structure is usually varied appropriately.	No run on or awkward sentences. Sentence structure is varied appropriately.	
Paragraph structure	Most paragraphs are incoherent.	Some paragraphs are structured appropriately.	Most paragraphs are structured and obviously coherent.	Every paragraph is begun, developed and concluded appropriately.	
Composition structure	Ideas appear haphazardly or incompletely or are not present. Relationships among ideas are not evident.	Ideas are present but often unrelated. Main points are not evident. Little flow through the composition exists.	Main points are evident and usually related in a logical fashion. Introduction and conclusion are present.	Subject is introduced. Main points are developed. Transitions are made. Conclusions follow from main points.	

Notes:

(1) Content must be graded separately.

Ethical Assessment Rubric

	UNSATISFACTORY 1	MARGINAL 2	GOOD 3	EXCELLENT 4	SCORE
Ethical Arguments	Ethical arguments do not match the ethical system. (Using a utility argument in Kantianism)	Ethical arguments are appropriate for the ethical system, however the reasoning skills demonstrated are weak or incomplete.	Almost all ethical arguments demonstrate strong reasoning skills in the ethical system. Arguments are mostly complete.	Ethical arguments demonstrate strong reasoning skills in the ethical system. All arguments are complete and concise.	
Primary actors are identified in the professional ethics scenarios.	Little or no identification of primary actors is completed.	Some primary actors are correctly identified.	Most primary actors are correctly identified.	All primary actors are correctly identified.	
Professional responsibilities are identified in professional ethics scenarios.	Few or no professional responsibilities are identified.	Some professional responsibilities are identified, but many are missed or too many extra are listed.	Most professional responsibilities are correctly identified, with few superfluous responsibilities listed.	All professional responsibilities are correctly identified, without superfluous responsibilities listed.	
Ethical resolution of the scenario is identified.	Little or no judgment has been made as to ethical resolution of the scenario	Some judgments are made as to as to the correct ethical resolution of the scenario. Little or no justification for judgments is present.	Mostly correct judgments are made as to as to the correct ethical resolution of the scenario. Most judgments are supported by valid reasoning.	Completely correct judgments are made as to as to the correct ethical resolution of the scenario. All judgments are supported by valid reasoning.	

Database Assessment Rubric

	UNSATISFACTORY 1	MARGINAL 2	Good 3	EXCELLENT 4	SCORE
Database Design	Table structure is difficult to follow. Not all required information is represented in the database.	All required information is present in the database. However the table structure is poorly designed	Table structure is appropriate and all required information is present.	Table structure is well designed. All required information is present. Tables have a primary key.	
Table Creation Statements	SQL code to create the tables is mostly incorrect or poorly designed.	Some SQL code to create the tables is correct, but many items are incorrect or poorly designed.	Most SQL code to create the tables is correct, but one or two columns is of the wrong type.	All SQL code to create the tables is correct.	
Insert Statements	SQL code to insert data into the tables is mostly incorrect or poorly designed.	Some SQL code to insert data into the tables is correct, but many items are incorrect or poorly designed.	Most SQL code to insert data into the tables is correct, but one or two columns is of the wrong type.	All SQL code to insert data into the tables is correct.	
Other SQL Code	Most code does not execute correctly.	Some of the SQL statements executes correctly, but many methods do not perform correctly.	Most implemented methods perform correctly.	The entire program is correct. All methods are implemented correctly.	
Reports	Most reports are poorly designed and unsatisfactory.	Many reports are poorly designed and unsatisfactory.	Virtually all reports are well designed and implemented.	All reports are well designed and implemented.	
Problem Solution	Many solution requirements are not completed.	Most requirements are completed.	Solution is well done with only one or two issues.	All requirements are completed. Project is easy to use and understand.	